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We investigate the phenomenon of velocity selection for traveling wave fronts in a class of coupled-
map lattices, derived by discretizations of the Fisher equation [Ann. Eugenics 7, 355 (1937)]. We find
that the velocity selection can be understood in terms of a discrete analog of the marginal-stability hy-
pothesis. A perturbative approach also enables us to estimate the selected velocity accurately for small

values of the discretization mesh sizes.
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Much attention has been focused on the problem of
propagation of stable states into unstable states [1]. The
classic example of such a situation is that of the Fisher
equation, which was first proposed as a model of mutant-
gene propagation [2]. This equation takes the form (in
one dimension)

Quix,t)/dt=u(x,t)(1—u(x,t))+[%u(x,t)/dx2], (1)

where u (x,t) is a field variable (e.g., order parameter,
population density) that depends on space (denoted by x)
and time (denoted by ?#). Kolmogorov, Petrovskii, and
Piscounov [2] found that (1) has stable traveling-wave
solutions (called “‘clines’’), which are walls traveling in
the +x direction with velocity v =2 and u(— o0,t)=1,
u(o0,t)=0 [or walls traveling in the —x direction with
velocity v =2 and u(—o0,t)=0, u(ow,t)=1]. Subse-
quently, Aronson and Weinberger [3] demonstrated the
powerful result that a broad class of initial conditions for
(1) asymptotically converge to the cline solutions with
v=x=2. In a more general context, Dee and Langer [4]
and Ben-Jacob er al. [5] studied velocity selection for the
propagation of stable states into unstable states and pro-
posed that the selected velocity v* is such that the front
is marginally stable, i.e., front solutions which move
slower than v* are unstable to perturbations (in the
comoving frame), while those which move faster than v *
are stable. This hypothesis is supported by results from
many partial differential equations, including the Fisher
equation [1].

While much attention has been paid to the question of
velocity selection in continuous systems (which are de-
scribed by partial differential equations), there is a pauci-
ty of work (with some exceptions [6]) on discrete systems,
i.e., coupled-map lattices (CML’s) [7] and cellular auto-
mata (CA) [8]. However, all numerical implementations
of partial differential equations are discrete systems. Fur-
thermore, discrete dynamical systems now constitute an
important class of models for real physical phenomena,
quite independent of whether or not they are derivable
from partial differential equations ([7,8]. Thus it is
relevant to ask whether there is a velocity selection in
discrete systems and, if so, by what mechanism. This is
the primary motivation of our study.

In this paper, we address the question of velocity selec-
tion for a particular class of CML’s which are derived by
three different discretization schemes from the Fisher
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equation. There are two reasons for this choice. First,
this class of CML’s are extensively studied as dynamical
systems in their own right [7]. Second, we are able to un-
derstand the velocity-selection behavior as a continuous
departure from that of the continuum Fisher equation,
for which there already exists a large literature [1]. Our
results indicate that these CML’s exhibit velocity selec-
tion, and this can be understood by a discrete analog of
the marginal-stability hypothesis proposed in the context
of continuum systems.

There is also a secondary outcome of our study, viz.,
our results are relevant as an investigation of how the ve-
locity selected in a discrete simulation of a partial
differential equation is affected by the mesh sizes and the
scheme chosen for the simulation. Typically, if one is in-
terested in simulating a partial differential equation, the
merits of a particular numerical scheme are determined
by the errors introduced by the scheme, viz., the
difference between the true solution of the partial
differential equation and the numerical solution obtained.
In all the schemes described below, it emerges that the
shape of the numerical cline solution matches that of the
real cline solution fairly well. The major difference be-
tween these schemes lie in the dependence of the velocity
selected on the discretization mesh size. This will be-
come clear when we present our results.

Before we proceed, let us return to the continuum
equation and explain how one applies the marginal-
stability hypothesis to understand velocity selection [1].
Let us look for traveling-wave solutions of (1) with veloci-
ty v, i.e., u(x,t)=u(x —vt)=u(n), where y=x —vt. The
corresponding equation that must be satisfied by u (%)
can be cast as the two-dimensional system

du(n)/dn=y(n), @
dy(n)/dnp=—u(n)(1—u(n))—vy(y) .

The fixed points of this system are (u*=0,y*=0) and
(u*=1,y*=0). If we linearize about the fixed points as
u(n)=u*+8u(n), y(n)=dy(n), we have the linearized
system

0 1

2u*—1 —v

du(n)
8y(n)

Su(n)
Sy (n)

4a
dn
It is easy to see that the fixed point (¥ *=1,y*=0) is al-

. (3)
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ways a saddle point, regardless of the value of v. On the
contrary, the fixed point (x * =0,y *=0) has the eigenval-
ues A, =[—v+(v2—4)""2]/2 and is always an attractor
but has complex eigenvalues for v <2 and real eigenval-
ues for v=>2. The trajectories that start at (u*=1,
y*=0) for =— and go to (u*=0,y*=0) for
n=-+ o correspond to the possible wall solutions of (1).
Thus the wall solutions for v <2 do not decrease mono-
tonically to u =0 but rather oscillate about ¥ =0. It is
easily demonstrated that these oscillatory solutions are
unstable [1]. Thus (2) has stable solutions only for the
case v > 2. The velocity v* =2, where a bifurcation in the
nature of the fixed point (u* =0, y*=0) occurs, also sig-
nals the transition from the unstable solutions to the
stable solutions. Thus v*=2 is the required marginally
stable velocity. From the rigorous results of Aronson
and Weinberger [3], we know that this is the selected ve-
locity for a large class of initial conditions on the Fisher
equation. ’

The first CML we will study is the simple one obtained
by an Euler discretization of (1), viz.,

ul(x,t +At)=u(x,t)+Atu (x,t)(1—u(x,t))
+alu(x +Ax,t)—2u(x,t)
+u(x —Ax,1)], (4)

where At and Ax are, respectively, the mesh sizes in time
and space and a=At/(Ax)%. For stability, this explicit
scheme must satisfy At <2 and a=<(2—A¢t)/4 [9]. We
have implemented (4) numerically on a one-dimensional
lattice with free-end boundary conditions and with initial
conditions consisting of (a) step functions of different am-
plitudes and (b) “tanh” profiles of different widths. All
these initial conditions rapidly evolve into a discrete
traveling-wave solution with a unique velocity less than 2
and the selected velocity is a function of Az and a. This
velocity selection can be understood from a discrete ana-
log of the argument presented above for the Fisher equa-
tion. Let us assume that the discrete lattice points lie on
the uniformly translating wave profile u (x —vt) so that
(4) becomes

ul(x —vt —vAt)=u(x —vt)+Atu(x —vt)(1 —u(x —vt))
+alu(x +Ax —vt)—2u(x —vt)
+u(x —Ax —wvt)], (5)

where (say) x =nAx and t =pAt. We make the further
assumption that the velocities can be classified as
v =Ax /N At, where N is an integer. (This will provide a

window in which the selected velocity lies.) Then (5)
reduces to the difference equation
Yim —1)=v(m)+Atp(m)(1—p(m))

+al(m +N)—2¢(m)+(m —N)] , (6)

where we have introduced the mapping variable
Y(m)=u((nN —p)vAt). Equation (6) is equivalent to a
2N-dimensional system of first-order mappings in the
variables ¥(m) and (2N — 1) difference variables in (m),
which we refer to as ¢,(m) through ¢,, _(m). The fixed
points of this system are a=[¢*=1,4*=0 for

i=1—(2N —1)] and B=[y*=0,6F=0 for
i=1—(2N —1)]. The trajectory that goes from a for
m = — oo to B for m =« corresponds to possible discrete
wall solutions. As in the continuum case, the discrete
wall solutions that oscillate before settling down to ¥=0
are unstable to perturbations. Further, the discrete wall
solutions that go monotonically to ¥»=0 are stable. The
corresponding bifurcation for (6) is signaled by the eigen-
values about the fixed point B in the (¢¥(m),¢,(m)) plane
[where ¢,(m)=14(m +1)—y¥(m)] going from complex at-
tractive to real attractive. The eigenvalues about the
fixed point B are easily found by linearizing (6) about
¥*=0 as Y(m)=256y(m) and looking for solutions of the
form 8y(m)=A". This yields the eigenvalue equation

al®N+(1+ At —2a)AYN =AY "14+a=0 . 7)

We can solve this numerically to find the critical value
N* such that the roots of (7) corresponding to motion in
the (y¥(m),$,(m)) plane are complex and attractive for
N =N?* and real and attractive for N=N*+1. This
gives a window inside which the marginally stable veloci-
ty must lie, i.e., from Ax/(N*At), to Ax/(N*+1)At.
Figure 1 shows the numerically obtained velocities
(marked by asterisks) for the explicit scheme and the win-
dow (marked by squares) for the marginally stable veloci-
ty for «=0.1 and different values of Az. For very small
values of Az, the windows are far too large and we do not
depict them on the figure. From the points shown, it is
evident that, for the simple CML considered, our discrete
analog of the marginal-stability hypothesis correctly gives
a window in which the numerically selected velocity lies.
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FIG. 1. Results for velocity selection in the CML resulting
from an explicit discretization of the Fisher equation. The as-
terisks denote numerical results on a one-dimensional lattice for
a front developing from a range of initial conditions described
in the text. The value of a was fixed at 0.1 and free-end bound-
ary conditions were imposed. The velocity is measured at the
point where the amplitude of the front is 0.5. The squares
denote the velocity window predicted by applying our discrete
analog of the marginal-stability hypothesis to the CML. The
triangles denote the marginally stable velocity for the partial
differential equation resulting from a Taylor expansion to
O (At? of the CML equation.
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Of course, this window may still be too large to be of
practical use. However, our aim is to demonstrate the va-
lidity of the discrete marginal-stability hypothesis for
CML’s rather than to obtain narrow bounds on the
selected velocity. Another estimate of the marginally
stable velocity for the CML can be obtained by a pertur-
bative expansion of the terms in (4), i.e., replacing the
discrete terms by their Taylor expansions in mesh sizes
and truncating at a particular order in Atf to obtain a par-
tial differential equation. If the marginal-stability hy-
pothesis is valid, the marginally stable velocity for this
equation should approximate the selected velocity for the
CML (4) for small values of mesh sizes. Taylor-
expanding terms in (4) and retaining only terms to
O (At?), we obtain

Ju(x,t) At u(x,t) , (At)* Bu(x,r)
at + 2 ar? N 6 ar?
_ . u(x,t) At d*u(x,t)
u(x, )1 —u(x,t))+ ) + 20 3.t
+[(A1)?/360a?][8% (x,1)/3x°] . (8)

If we look for traveling-wave solutions of (8), we obtain a
system of six first-order differential equations in
(u,91,Y2,¥3:Y4,Ys), Where y;(n)=d'u(n)/dn', n=x —vt.
We study the eigenvalues of this system about the fixed
point (u*=0,y*=0 for i =1—5). The eigenvalues are
given by

[(A2)?/360a]A°+ (At /12a)A*+[v3(Ar )2 /6]A3
+[1—(2A1/2)]A2+vA+1=0. (9)

As before, the bifurcation of this fixed point from a com-
plex attractor to a real attractor in the (u,y,) plane sig-
nals the marginally stable velocity for the partial
differential equation (8). The marginally stable velocity
obtained in this fashion is depicted by triangles in Fig. 1.
The agreement with numerical results for small and
moderate values of A? is excellent. It is also surprisingly
good for large values of At but this should be regarded as
fortuitous. We remark that the agreement can be im-
proved for all values of At by considering higher-order
terms in the expansion that led to (8). As a matter of
fact, it is possible to retain all orders in perturbation
theory but this leads to a transcendental equation for the
eigenvalues [10].

Our second example of a CML is obtained by a discret-
ization of the Fisher equation that was proposed by Oono
and Puri [11]. In a previous paper [9], we have demon-
strated that this scheme enables a reasonable simulation
of the Fisher equation at much higher values of At (i.e.,
At = 2) than are permitted by the explicit scheme. This
scheme is of the form

u(x,t +A)=u(x,t)/[u(x,t)+(1—u(x,t))exp(—At)]
+alulx +Ax,t)—2u(x,t)+u(x —Ax,t)],
(10)

where a=At/(Ax)?>. This scheme is stable for
a=<[l+exp(—At)]/4 [9]. Applying the methods de-
scribed previously, we arrive at the following eigenvalue
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equation for determining the window in which the mar-
ginally stable velocity lies:

al?N+ (e —2a)AN—AN "1+a=0. (11

The eigenvalue equation obtained from a perturbative ex-
pansion of (10) to O(At?) is

(At)?

3 2
7‘4+U6 v AL

(At)z 64 At
360a? 12a

+vA+{1+(Ar/2)+[(A2)?/6]}=0. (12)

M+ 1= A2

Figure 2 shows results for the numerically selected veloci-
ty (denoted by asterisks), the window in which the mar-
ginally stable velocity lies (denoted by squares), and the
marginally stable velocity from a perturbative expansion
of (10) (denoted by triangles). Again, we fix a=0.1 and
vary the value of At.

The third (and final) CML we will consider is derived
from an implicit discretization of the Fisher equation
[12]. The implicit discretization is vastly superior to the
explicit discretization as far as numerical stability and
numerical errors are concerned. It takes the form

u(x,t +At)=u(x,t)+Atu(x,t)[1—u(x,t)]
+alu(x +Ax,t +At)—2u(x,t +At1)
+u(x —Ax,t +At)], (13)

so that the diffusion term is discretized at time z + At
rather than at time ¢. The only requirement for stability
of this scheme is that Ar <2.

We can look for discrete traveling-wave solutions of
(13) precisely as before. The corresponding eigenvalue
equation that emerges for the window in which the mar-
ginally stable velocity lies is

al®M+(1+AOAN T —(1+2a0)AN—a=0 . (14)

The corresponding eigenvalue equation obtained from the
perturbative treatment to O (Az?) is
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FIG. 2. Results for velocity selection in the CML resulting
from the Oono-Puri [11] discretization of the Fisher equation.
Numerical results are obtained as described in Fig. 1 and the
symbols used have the same meaning as those in Fig. 1.
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(A ¢ v(ALP? .5, At | , 1 |.4
26022 124 2 [PA e |t
2 2
+vAt U:t—l]k3+ [1—”7“ A24vA+1=0.

(15)

Figure 3 shows the numerical results (as asterisks) for the
selected velocity as a function of Az for a=0.1. As op-
posed to the explicit scheme, the velocity remains more
or less stable about 2, which is the continuum value, indi-
cating why the implicit scheme is numerically superior to
the explicit scheme. Again, the numerical velocity is al-
ways inside the window predicted by the marginal-
stability approach applied directly to the CML (denoted
by squares). The agreement with the marginal-stability
hypothesis applied to the perturbatively obtained partial
differential equation is rather good, even for large values
of At (denoted by triangles).

At this stage, it is important to discuss the behavior of
the selected velocity as a function of At and the implica-
tions of this for the numerical merits of the various
schemes. For the explicit scheme, the selected velocity
decreases rapidly as At is increased. Thus, in terms of
mimicking the true solution (which has a selected veloci-
ty of 2), the explicit scheme is the worst of the three con-
sidered here. For the Oono-Puri scheme, the selected ve-
locity again decreases as At is increased but not as drasti-
cally as for the explicit scheme. Furthermore, the select-
ed velocity saturates out to a steady value (approximately
1.5) at large values of At¢. Finally, the implicit scheme
shows steady behavior for the numerically selected veloc-
ity, which shows small fluctuations about the value for
the continuum Fisher equation. As we have shown else-
where [9], the shape of the traveling-wave front does not
have a strong dependence on the mesh size or the numeri-
cal scheme used. Thus the implicit scheme mimicks the
true solution best among the schemes considered here.
Unfortunately, the implicit scheme is unstable for Az > 2,
so it cannot be used with very large mesh sizes. Further-
more, the matrix inversion required to apply the implicit
scheme is progressively more demanding numerically in
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FIG. 3. Results for velocity selection in the CML resulting
from an implicit discretization of the Fisher equation. Numeri-
cal results are obtained as described in Fig. 1 and the symbols
used have the same meaning as those in Fig. 1.

higher dimensions. Our conclusion is that, as far as nu-
merical merits are concerned, the Oono-Puri scheme is
the best for dimensions higher than 1. For d =1, one
could combine the excellent stability properties of the
Oono-Puri scheme (for high values of Az) with the steady
behavior of the selected velocity in the implicit scheme by
using a scheme in which the local term is solved exactly
(as in the Oono-Puri scheme) and the diffusion term is
discretized as in the implicit scheme.

To summarize: We have studied velocity selection in
CML’s obtained by three different discretizations of the
Fisher equation. We find that the numerically selected
velocity is in accordance with a discrete analog of the
marginal stability hypothesis. We can also obtain a good
approximation of the numerically selected velocity for
small mesh sizes by applying the marginal-stability hy-
pothesis to the partial differential equations obtained by a
Taylor expansion of the CML equations.
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